Categories
Selected Articles

SARS-CoV-2 variant biology: immune escape, transmission and fitness

Listen to this article

41579_2022_841_Fig1_HTML.png

  1. World Health Organization. https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-19-pandemic-in-2020-and-2021WHO (2022).

  2. Gorbalenya, A. E. et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020).

    Article  Google Scholar 

  3. Peacock, T. P., Penrice-Randal, R., Hiscox, J. A. & Barclay, W. S. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001584 (2021).

    Article  Google Scholar 

  4. Lu, L. et al. Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands. Nat. Commun. 12, 6802 (2021).

    Article  CAS  Google Scholar 

  5. Marques, A. D. et al. Multiple introductions of SARS-CoV-2 Alpha and Delta variants into white-tailed deer in Pennsylvania. mBio 13, e02101-22 (2022).

    Article  Google Scholar 

  6. Hale, V. L. et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature 602, 481–486 (2022).

    Article  CAS  Google Scholar 

  7. Bashor, L. et al. SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection. Proc. Natl Acad. Sci. USA 118, e2105253118 (2021).

    Article  CAS  Google Scholar 

  8. MacLean, O. A., Orton, R. J., Singer, J. B. & Robertson, D. L. No evidence for distinct types in the evolution of SARS-CoV-2. Virus Evolut. https://doi.org/10.1093/ve/veaa034 (2020).

    Article  Google Scholar 

  9. Volz, E. et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64–75.e11 (2021).

    Article  CAS  Google Scholar 

  10. O’Toole, Á., Pybus, O. G., Abram, M. E., Kelly, E. J. & Rambaut, A. Pango lineage designation and assignment using SARS-CoV-2 spike gene nucleotide sequences. BMC Genom. 23, 121–121 (2022).

    Article  Google Scholar 

  11. Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article  CAS  Google Scholar 

  12. Woolhouse, M. E., Taylor, L. H. & Haydon, D. T. Population biology of multihost pathogens. Science 292, 1109–1112 (2001).

    Article  CAS  Google Scholar 

  13. Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).

    Article  Google Scholar 

  14. MacLean, O. A. et al. Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen. PLoS Biol. 19, e3001115 (2021).

    Article  CAS  Google Scholar 

  15. Conceicao, C. et al. The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 18, e3001016 (2020).

    Article  CAS  Google Scholar 

  16. Delaune, D. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12, 6563 (2021).

    Article  CAS  Google Scholar 

  17. Lin, X. D. et al. Extensive diversity of coronaviruses in bats from China. Virology 507, 1–10 (2017).

    Article  CAS  Google Scholar 

  18. Starr, T. N. et al. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. Nature 603, 913–918 (2022).

    Article  CAS  Google Scholar 

  19. Peacock, T. P. et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 6, 899–909 (2021).

    Article  CAS  Google Scholar 

  20. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).

    Article  CAS  Google Scholar 

  21. Zhu, Y. et al. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat. Commun. 12, 961 (2021).

    Article  CAS  Google Scholar 

  22. Peacock, T. P. et al. The SARS-CoV-2 variants associated with infections in India, B.1.617, show enhanced spike cleavage by furin. Preprint at bioRxiv https://doi.org/10.1101/2021.05.28.446163 (2021).

  23. Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).

    Article  CAS  Google Scholar 

  24. Lubinski, B. et al. Spike protein cleavage-activation in the context of the SARS-CoV-2 P681R mutation: an analysis from its first appearance in lineage A.23.1 identified in Uganda. Microbiol. Spectr. 10, e0151422 (2022).

    Article  Google Scholar 

  25. Brown, J. C. et al. Increased transmission of SARS-CoV-2 lineage B.1.1.7 (VOC 2020212/01) is not accounted for by a replicative advantage in primary airway cells or antibody escape. Preprint at bioRxiv https://doi.org/10.1101/2021.02.24.432576 (2021).

  26. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).

    Article  CAS  Google Scholar 

  27. Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294–299 (2022).

    Article  CAS  Google Scholar 

  28. Campbell, F. et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance 26, 2100509 (2021).

    Article  CAS  Google Scholar 

  29. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).

    Article  CAS  Google Scholar 

  30. Liu, Y. et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep. 39, 110829 (2022).

    Article  CAS  Google Scholar 

  31. Willett, B. J. et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01143-7 (2022).

    Article  Google Scholar 

  32. Peacock, T. P. et al. The altered entry pathway and antigenic distance of the SARS-CoV-2 Omicron variant map to separate domains of spike protein. Preprint at bioRxiv https://doi.org/10.1101/2021.12.31.474653 (2022).

  33. Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).

    Article  CAS  Google Scholar 

  34. Zhou, J. et al. Omicron breakthrough infections in vaccinated or previously infected hamsters. Preprint at bioRxiv https://doi.org/10.1101/2022.05.20.492779 (2022).

  35. Thomson, E. C. et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184, 1171–1187.e20 (2021).

    Article  CAS  Google Scholar 

  36. Hsieh, C.-L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).

    Article  CAS  Google Scholar 

  37. Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184, 2372–2383.e9 (2021).

    Article  CAS  Google Scholar 

  38. Newman, J. et al. Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nat. Microbiol. 7, 1180–1188 (2022).

    Article  CAS  Google Scholar 

  39. Davis, C. et al. Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathog. 17, e1010022 (2021).

    Article  CAS  Google Scholar 

  40. Lopez Bernal, J. et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N. Engl. J. Med. 385, 585–594 (2021).

    Article  Google Scholar 

  41. Andrews, N. et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2119451 (2022).

    Article  Google Scholar 

  42. Abu-Raddad, L. J., Chemaitelly, H. & Butt, A. A. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N. Engl. J. Med. 385, 187–189 (2021).

    Article  CAS  Google Scholar 

  43. Tegally, H. et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat. Med. https://doi.org/10.1038/s41591-022-01911-2 (2022).

    Article  Google Scholar 

  44. Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature https://doi.org/10.1038/s41586-022-04411-y (2022).

    Article  Google Scholar 

  45. Cele, S. et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602, 654–656 (2022).

    Article  CAS  Google Scholar 

  46. Willett, B. J. et al. Distinct antigenic properties of the SARS-CoV-2 Omicron lineages BA.4 and BA.5. Preprint at bioRxiv https://doi.org/10.1101/2022.05.25.493397 (2022).

  47. Tuekprakhon, A. et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell https://doi.org/10.1016/j.cell.2022.06.005 (2022).

    Article  Google Scholar 

  48. Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature https://doi.org/10.1038/s41586-022-04980-y (2022).

    Article  Google Scholar 

  49. Khan, K. et al. Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection. Nat. Commun. 13, 4686 (2022).

    Article  CAS  Google Scholar 

  50. Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature https://doi.org/10.1038/s41586-022-04474-x (2022).

    Article  Google Scholar 

  51. Simon-Loriere, E. & Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol. 20, 187–188 (2022).

    Article  CAS  Google Scholar 

  52. van der Straten, K. et al. Antigenic cartography using sera from sequence-confirmed SARS-CoV-2 variants of concern infections reveals antigenic divergence of Omicron. Immunity https://doi.org/10.1016/j.immuni.2022.07.018 (2022).

    Article  Google Scholar 

  53. Accorsi, E. K. et al. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants. JAMA 327, 639–651 (2022).

    Article  CAS  Google Scholar 

  54. Kherabi, Y., Launay, O. & Luong Nguyen, L. B. COVID-19 vaccines against Omicron variant: real-world data on effectiveness. Viruses 14, 2086 (2022).

    Article  CAS  Google Scholar 

  55. Kirsebom, F. C. M. et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(22)00309-7 (2022).

    Article  Google Scholar 

  56. Ferdinands, J. M. et al. Waning 2-dose and 3-dose effectiveness of mRNA vaccines against COVID-19-associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance – VISION Network, 10 states, August 2021-January 2022. MMWR Morb. Mortal. Wkly Rep. 71, 255–263 (2022).

  57. Collie, S., Champion, J., Moultrie, H., Bekker, L.-G. & Gray, G. Effectiveness of BNT162b2 vaccine against Omicron variant in South Africa. N. Engl. J. Med. 386, 494–496 (2021).

    Article  Google Scholar 

  58. Higdon, M. M. et al. Duration of effectiveness of vaccination against COVID-19 caused by the omicron variant. Lancet Infect. Dis. 22, 1114–1116 (2022).

    Article  CAS  Google Scholar 

  59. Fang, Z. et al. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nat. Commun. 13, 3250 (2022).

    Article  CAS  Google Scholar 

  60. Alu, A. et al. Intranasal COVID-19 vaccines: from bench to bed. eBioMedicine 76, 103841 (2022).

    Article  CAS  Google Scholar 

  61. Dolgin, E. Pan-coronavirus vaccine pipeline takes form. Nat. Rev. Drug Discov. 21, 324–326 (2022).

    Article  CAS  Google Scholar 

  62. Eguia, R. T. et al. A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog. 17, e1009453 (2021).

    Article  CAS  Google Scholar 

  63. Edridge, A. W. D. et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med. 26, 1691–1693 (2020).

    Article  CAS  Google Scholar 

  64. Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784.e5 (2020).

    Article  CAS  Google Scholar 

  65. Johnson, B. A. et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591, 293–299 (2021).

    Article  CAS  Google Scholar 

  66. Misumi, Y. et al. Functional expression of furin demonstrating its intracellular localization and endoprotease activity for processing of proalbumin and complement pro-C3. J. Biol. Chem. 266, 16954–16959 (1991).

    Article  CAS  Google Scholar 

  67. Hill, V. et al. The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evol. https://doi.org/10.1093/ve/veac080 (2022).

    Article  Google Scholar 

  68. Laiton-Donato, K. et al. Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. Infect. Genet. Evol. 95, 105038 (2021).

    Article  CAS  Google Scholar 

  69. Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300–306 (2022).

    Article  CAS  Google Scholar 

  70. Lubinski, B., Jaimes, J. A. & Whittaker, G. R. Intrinsic furin-mediated cleavability of the spike S1/S2 site from SARS-CoV-2 variant B.1.1.529 (Omicron). Preprint at bioRxiv https://doi.org/10.1101/2022.04.20.488969 (2022).

  71. Lubinski, B. et al. Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike. iScience 25, 103589 (2022).

    Article  CAS  Google Scholar 

  72. Zhang, L. et al. Furin cleavage of the SARS-CoV-2 spike is modulated by O-glycosylation. Proc. Natl Acad. Sci. USA 118, e2109905118 (2021).

    Article  CAS  Google Scholar 

  73. Sanda, M., Morrison, L. & Goldman, R. N- and O-glycosylation of the SARS-CoV-2 spike protein. Anal. Chem. 93, 2003–2009 (2021).

    Article  CAS  Google Scholar 

  74. Gonzalez-Rodriguez, E. et al. O-linked sialoglycans modulate the proteolysis of SARS-CoV-2 spike and contribute to the mutational trajectory in variants of concern. Preprint at bioRxiv https://doi.org/10.1101/2022.09.15.508093 (2022).

  75. Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature https://doi.org/10.1038/s41586-022-04462-1 (2022).

    Article  Google Scholar 

  76. Mesner, D. et al. SARS-CoV-2 Spike evolution influences GBP and IFITM sensitivity. Preprint at bioRxiv https://doi.org/10.1101/2022.03.07.481785 (2022).

  77. Reuschl, A.-K. et al. Enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants BA.4 and BA.5. Preprint at bioRxiv https://doi.org/10.1101/2022.07.12.499603 (2022).

  78. Hui, K. P. Y. et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature https://doi.org/10.1038/s41586-022-04479-6 (2022).

    Article  Google Scholar 

  79. Aggarwal, A. et al. Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of Omicron in Australia. Nat. Microbiol. 7, 896–908 (2022).

    Article  CAS  Google Scholar 

  80. Barut, T. et al. The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype. Preprint at bioRxiv https://doi.org/10.1101/2022.04.28.489537 (2022).

  81. Bentley, E. G. et al. SARS-CoV-2 Omicron-B.1.1.529 Variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19. Preprint at bioRxiv https://doi.org/10.1101/2021.12.26.474085 (2021).

  82. Kimura, I. et al. SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant. Preprint at bioRxiv https://doi.org/10.1101/2022.04.03.486864 (2022).

  83. Yamamoto, M. et al. SARS-CoV-2 Omicron spike H655Y mutation is responsible for enhancement of the endosomal entry pathway and reduction of cell surface entry pathways. Preprint at bioRxiv https://doi.org/10.1101/2022.03.21.485084 (2022).

  84. Kimura, I. et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants including BA.4 and BA.5. Cell https://doi.org/10.1016/j.cell.2022.09.018 (2022).

    Article  Google Scholar 

  85. Allen, H. et al. Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: national cohort study, England. Preprint at medRxiv https://doi.org/10.1101/2022.02.15.22271001 (2022).

  86. Lyngse, F. P. et al. Household transmission of the SARS-CoV-2 Omicron variant in Denmark. Nat. Commun. 13, 5573 (2022).

    Article  CAS  Google Scholar 

  87. Yu, S. et al. SARS-CoV-2 spike engagement of ACE2 primes S2′ site cleavage and fusion initiation. Proc. Natl Acad. Sci. USA 119, e2111199119 (2022).

    Article  CAS  Google Scholar 

  88. Millet, J. K. & Whittaker, G. R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl Acad. Sci. USA 111, 15214–15219 (2014).

    Article  CAS  Google Scholar 

  89. Belouzard, S., Chu, V. C. & Whittaker, G. R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl Acad. Sci. USA 106, 5871–5876 (2009).

    Article  CAS  Google Scholar 

  90. Benton, D. J. et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327–330 (2020).

    Article  CAS  Google Scholar 

  91. Bestle, D. et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance 3, e202000786 (2020).

    Article  Google Scholar 

  92. Qing, E. et al. Inter-domain communication in SARS-CoV-2 spike proteins controls protease-triggered cell entry. Cell Rep. 39, 110786 (2022).

    Article  CAS  Google Scholar 

  93. Meng, B. et al. SARS-CoV-2 spike N-terminal domain modulates TMPRSS2-dependent viral entry and fusogenicity. Cell Rep. 40, 111220 (2022).

    Article  CAS  Google Scholar 

  94. Cantoni, D. et al. Evolutionary remodelling of N-terminal domain loops fine-tunes SARS-CoV-2 spike. EMBO Rep. 23, e54322 (2022).

    Article  CAS  Google Scholar 

  95. Syed, A. M. et al. Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science 374, 1626–1632 (2021).

    Article  CAS  Google Scholar 

  96. Wu, H. et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe 29, 1788–1801.e6 (2021).

    Article  CAS  Google Scholar 

  97. Johnson, B. A. et al. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathog. 18, e1010627 (2022).

    Article  CAS  Google Scholar 

  98. Mears, H. V. et al. Emergence of new subgenomic mRNAs in SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2022.04.20.488895 (2022).

  99. Leary, S. et al. Generation of a novel SARS-CoV-2 sub-genomic RNA due to the R203K/G204R variant in nucleocapsid: homologous recombination has potential to change SARS-CoV-2 at both protein and RNA level. Pathog. Immun. 6, 27–49 (2021).

    Article  Google Scholar 

  100. Syed, A. M. et al. Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. Proc. Natl Acad. Sci. USA 119, e2200592119 (2022).

    Article  CAS  Google Scholar 

  101. Schoeman, D. & Fielding, B. C. Coronavirus envelope protein: current knowledge. Virol. J. 16, 69 (2019).

    Article  Google Scholar 

  102. Xia, B. et al. Why SARS-CoV-2 Omicron variant is milder? A single high-frequency mutation of structural envelope protein matters. Preprint at bioRxiv https://doi.org/10.1101/2022.02.01.478647 (2022).

  103. Ricciardi, S. et al. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature https://doi.org/10.1038/s41586-022-04835-6 (2022).

    Article  Google Scholar 

  104. Peng, Y. et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21, 1336–1345 (2020).

    Article  CAS  Google Scholar 

  105. Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 23, 186–193 (2022).

    Article  CAS  Google Scholar 

  106. Feng, S. et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 27, 2032–2040 (2021).

    Article  CAS  Google Scholar 

  107. Tan, A. T. et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 34, 108728 (2021).

    Article  CAS  Google Scholar 

  108. Bange, E. M. et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat. Med. 27, 1280–1289 (2021).

    Article  CAS  Google Scholar 

  109. Oberhardt, V. et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature 597, 268–273 (2021).

    Article  CAS  Google Scholar 

  110. Tarke, A. et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep. Med. 2, 100204 (2021).

    Article  CAS  Google Scholar 

  111. Agerer, B. et al. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Sci. Immunol. 6, eabg6461 (2021).

    Article  Google Scholar 

  112. Goonetilleke, N. et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 206, 1253–1272 (2009).

    Article  CAS  Google Scholar 

  113. Wilkinson, S. A. J. et al. Recurrent SARS-CoV-2 mutations in immunodeficient patients. Virus Evol. https://doi.org/10.1093/ve/veac050 (2022).

    Article  Google Scholar 

  114. Stanevich, O. et al. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-750741/v1 (2021).

  115. de Silva, T. I. et al. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience 24, 103353 (2021).

    Article  Google Scholar 

  116. Motozono, C. et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe 29, 1124–1136.e11 (2021).

    Article  CAS  Google Scholar 

  117. Dolton, G. et al. Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope. Cell 185, 2936–2951.e19 (2022).

    Article  CAS  Google Scholar 

  118. Riou, C. et al. Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Sci. Transl Med. 14, eabj6824 (2022).

    Article  CAS  Google Scholar 

  119. Reynolds, C. J. et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science 372, 1418–1423 (2021).

    Article  CAS  Google Scholar 

  120. Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847–859.e11 (2022).

    Article  CAS  Google Scholar 

  121. UKHSA. COVID-19 Vaccine Surveillance Report (UKHSA, 2022).

  122. Naranbhai, V. et al. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell 185, 1041–1051.e6 (2022).

    Article  CAS  Google Scholar 

  123. Wellington, D. et al. SARS-CoV-2 mutations affect proteasome processing to alter CD8+ T cell responses. Preprint at bioRxiv https://doi.org/10.1101/2022.04.08.487623 (2022).

  124. Ladell, K. et al. A molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity 38, 425–436 (2013).

    Article  CAS  Google Scholar 

  125. Zhang, Y. et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-I. Proc. Natl Acad. Sci. USA 118, e2024202118 (2021).

    Article  CAS  Google Scholar 

  126. Moriyama, M., Lucas, C., Monteiro, V. S., Yale SARS-CoV-2 Genomic Surveillance Initiative & Iwasaki, A. SARS-CoV-2 Omicron subvariants evolved to promote further escape from MHC-I recognition. Preprint at bioRxiv https://doi.org/10.1101/2022.05.04.490614 (2022).

  127. Yoo, J.-S. et al. SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. Nat. Commun. 12, 6602 (2021).

    Article  CAS  Google Scholar 

  128. Arshad, N. et al. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression. Preprint at bioRxiv https://doi.org/10.1101/2022.05.17.492198 (2022).

  129. Zhang, F. et al. Inhibition of major histocompatibility complex-I antigen presentation by sarbecovirus ORF7a proteins. Preprint at bioRxiv https://doi.org/10.1101/2022.05.25.493467 (2022).

  130. Stewart, H. et al. Tetherin antagonism by SARS-CoV-2 enhances virus release: multiple mechanisms including ORF3a-mediated defective retrograde traffic. Preprint at bioRxiv https://doi.org/10.1101/2021.01.06.425396 (2021).

  131. Rambaut, A. et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Virological.org https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563 (2020).

  132. Mandl, J. N. et al. Reservoir host immune responses to emerging zoonotic viruses. Cell 160, 20–35 (2015).

    Article  CAS  Google Scholar 

  133. Thorne, L. G. et al. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature 602, 487–495 (2022).

    Article  CAS  Google Scholar 

  134. Lista, M. J. et al. The P681H mutation in the spike glycoprotein confers type I interferon resistance in the SARS-CoV-2 alpha (B.1.1.7) variant. Preprint at bioRxiv https://doi.org/10.1101/2021.11.09.467693 (2021).

  135. Guo, K. et al. Interferon resistance of emerging SARS-CoV-2 variants. Proc. Natl Acad. Sci. USA 119, e2203760119 (2022).

    Article  CAS  Google Scholar 

  136. Bouhaddoum, M. et al. Global landscape of the host response to SARS-CoV-2 variants reveals viral evolutionary trajectories. Preprint at bioRxiv https://doi.org/10.1101/2022.10.19.512927 (2022).

  137. Hall, R. et al. SARS-CoV-2 ORF6 disrupts innate immune signalling by inhibiting cellular mRNA export. PLoS Pathog. 18, e1010349 (2022).

    Article  CAS  Google Scholar 

  138. Jiang, H.-w et al. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell. Mol. Immunol. 17, 998–1000 (2020).

    Article  CAS  Google Scholar 

  139. Beyer, D. K. & Forero, A. Mechanisms of antiviral immune evasion of SARS-CoV-2. J. Mol. Biol. 434, 167265 (2022).

    Article  CAS  Google Scholar 

  140. Xu, D., Biswal, M., Neal, A. & Hai, R. Devil’s tools: SARS-CoV-2 antagonists against innate immunity. Curr. Res. Virol. Sci. 2, 100013 (2021).

    Article  CAS  Google Scholar 

  141. Shalamova, L. et al. Omicron variant of SARS-CoV-2 exhibits an increased resilience to the antiviral type I interferon response. PNAS Nexus https://doi.org/10.1093/pnasnexus/pgac067 (2022).

    Article  Google Scholar 

  142. Winstone, H. et al. The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2. J. Virol. https://doi.org/10.1128/jvi.02422-20 (2021).

    Article  Google Scholar 

  143. Zhao, X. et al. Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. Proc. Natl Acad. Sci. USA 111, 6756–6761 (2014).

    Article  CAS  Google Scholar 

  144. Prelli Bozzo, C. et al. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat. Commun. 12, 4584 (2021).

    Article  CAS  Google Scholar 

  145. Nchioua, R. et al. SARS-CoV-2 variants of concern hijack IFITM2 for efficient replication in human lung cells. J. Virol. 96, e00594-22 (2022).

    Article  Google Scholar 

  146. Diamond, M. S. & Farzan, M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13, 46–57 (2013).

    Article  CAS  Google Scholar 

  147. Li, K. et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog. 9, e1003124 (2013).

    Article  CAS  Google Scholar 

  148. Klein, S. et al. IFITM3 blocks viral entry by sorting lipids and stabilizing hemifusion. Preprint at bioRxiv https://doi.org/10.1101/2022.09.01.506185 (2022).

  149. Sandler, N. G. & Douek, D. C. Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nat. Rev. Microbiol. 10, 655–666 (2012).

    Article  CAS  Google Scholar 

  150. Wang, Z. et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 595, 426–431 (2021).

    Article  CAS  Google Scholar 

  151. Levin, E. G. et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).

    Article  CAS  Google Scholar 

  152. Paton, R. S., Overton, C. E. & Ward, T. The rapid replacement of the Delta variant by Omicron (B.1.1.529) in England. Sci. Transl Med. 14, eabo5395 (2022).

    Article  CAS  Google Scholar 

  153. Earnest, R. et al. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. Cell Rep. Med. 3, 100583 (2022).

    Article  CAS  Google Scholar 

  154. Tang, P. et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat. Med. 27, 2136–2143 (2021).

    Article  CAS  Google Scholar 

  155. Bruxvoort, K. J. et al. Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. BMJ 375, e068848 (2021).

    Article  Google Scholar 

  156. Lyngse, F. P. et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: evidence from Danish households. Preprint at medRxiv https://doi.org/10.1101/2022.01.28.22270044 (2022).

  157. Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces converging Omicron RBD evolution. Preprint at bioRxiv https://doi.org/10.1101/2022.09.15.507787 (2022).

  158. Sheward, D. J. et al. Omicron sublineage BA.2.75.2 exhibits extensive escape from neutralising antibodies. Preprint at bioRxiv https://doi.org/10.1101/2022.09.16.508299 (2022).

  159. Sheward, D. J. et al. Evasion of neutralising antibodies by omicron sublineage BA.2.75. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(22)00524-2 (2022).

    Article  Google Scholar 

  160. Wang, Q. et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 608, 603–608 (2022).

    Article  CAS  Google Scholar 

  161. Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).

    Article  Google Scholar 

  162. Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).

    Article  CAS  Google Scholar 

  163. Sasaki, A., Lion, S. & Boots, M. Antigenic escape selects for the evolution of higher pathogen transmission and virulence. Nat. Ecol. Evol. 6, 51–62 (2022).

    Article  Google Scholar 

  164. Pascall, D. J. et al. Inconsistent directions of change in case severity across successive SARS-CoV-2 variant waves suggests an unpredictable future. Preprint at medRxiv https://doi.org/10.1101/2022.03.24.22272915 (2022).

  165. Wolter, N. et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet 399, 437–446 (2022).

    Article  CAS  Google Scholar 

  166. Bager, P. et al. Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: an observational cohort study. Lancet Infect. Dis. https://doi.org/10.1016/s1473-3099(22)00154-2 (2022).

    Article  Google Scholar 

  167. Nyberg, T. et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet https://doi.org/10.1016/S0140-6736(22)00462-7 (2022).

    Article  Google Scholar 

  168. Lewnard, J. A. et al. Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in southern California. Nat. Med. https://doi.org/10.1038/s41591-022-01887-z (2022).

    Article  Google Scholar 

  169. Lamers, M. M. & Haagmans, B. L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 20, 270–284 (2022).

    Article  CAS  Google Scholar 

  170. Dong, W. et al. The K18-human ACE2 transgenic mouse model recapitulates non-severe and severe COVID-19 in response to an infectious dose of the SARS-CoV-2 virus. J. Virol. 96, e0096421 (2022).

    Article  Google Scholar 

  171. Thakur, N. et al. SARS-CoV-2 variants of concern alpha, beta, gamma and delta have extended ACE2 receptor host ranges. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001735 (2022).

    Article  Google Scholar 

  172. Menachery, V. D., Gralinski, L. E., Baric, R. S. & Ferris, M. T. New metrics for evaluating viral respiratory pathogenesis. PLoS ONE 10, e0131451 (2015).

    Article  Google Scholar 

  173. Uraki, R. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2. Nature https://doi.org/10.1038/s41586-022-04856-1 (2022).

    Article  Google Scholar 

  174. Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603, 687–692 (2022).

    Article  CAS  Google Scholar 

  175. Mefsin, Y. et al. Epidemiology of infections with SARS-CoV-2 Omicron BA.2 variant in Hong Kong, January-March 2022. Preprint at medRxiv https://doi.org/10.1101/2022.04.07.22273595 (2022).

  176. Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603, 693–699 (2022).

    Article  CAS  Google Scholar 

  177. van Doremalen, N. et al. SARS-CoV-2 Omicron BA.1 and BA.2 are attenuated in rhesus macaques as compared to Delta. Preprint at bioRxiv https://doi.org/10.1101/2022.08.01.502390 (2022).

  178. Su, W. et al. Omicron BA.1 and BA.2 sub-lineages show reduced pathogenicity and transmission potential than the early SARS-CoV-2 D614G variant in Syrian hamsters. J. Infect. Dis. https://doi.org/10.1093/infdis/jiac276 (2022).

    Article  Google Scholar 

  179. Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).

    Article  CAS  Google Scholar 

  180. Niemi, M. E. K., Daly, M. J. & Ganna, A. The human genetic epidemiology of COVID-19. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00478-5 (2022).

    Article  Google Scholar 

  181. Whitaker, M. et al. Variant-specific symptoms of COVID-19 among 1,542,510 people in England. Preprint at medRxiv https://doi.org/10.1101/2022.05.21.22275368 (2022).

  182. Gonzalez-Reiche, A. S. et al. SARS-CoV-2 variants in the making: Sequential intrahost evolution and forward transmissions in the context of persistent infections. Preprint at medRxiv https://doi.org/10.1101/2022.05.25.22275533 (2022).

  183. Ghafari, M., Liu, Q., Dhillon, A., Katzourakis, A. & Weissman, D. B. Investigating the evolutionary origins of the first three SARS-CoV-2 variants of concern. Front. Virol. https://doi.org/10.3389/fviro.2022.942555 (2022).

    Article  Google Scholar 

  184. Harari, S. et al. Drivers of adaptive evolution during chronic SARS-CoV-2 infections. Nat. Med. https://doi.org/10.1038/s41591-022-01882-4 (2022).

    Article  Google Scholar 

  185. Roemer, C. Variant report 2022-08-31. https://github.com/neherlab/SARS-CoV-2_variant-reports/tree/main/reports (2022).

  186. Pickering, B. et al. Highly divergent white-tailed deer SARS-CoV-2 with potential deer-to-human transmission. Preprint at bioRxiv https://doi.org/10.1101/2022.02.22.481551 (2022).

  187. McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184, 2332–2347.e16 (2021).

    Article  CAS  Google Scholar 

  188. Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).

    Article  CAS  Google Scholar 

  189. Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29, 463–476.e6 (2021).

    Article  CAS  Google Scholar 

  190. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

    Article  CAS  Google Scholar 

  191. Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).

    Article  CAS  Google Scholar 

  192. Wright, D. W. et al. Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer. Virus Evol. https://doi.org/10.1093/ve/veac023 (2022).

    Article  Google Scholar 

  193. Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).

    Article  CAS  Google Scholar 

  194. Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438–443 (2021).

    Article  CAS  Google Scholar 

  195. Dhar, M. S. et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science 374, 995–999 (2021).

    Article  CAS  Google Scholar 

  196. McCrone, J. T. et al. Context-specific emergence and growth of the SARS-CoV-2 Delta variant. Nature https://doi.org/10.1038/s41586-022-05200-3 (2022).

    Article  Google Scholar 

  197. UKHSA. SARS-CoV-2 Variants of Concern and Variants Under Investigation in England: Technical Briefing 25 (UKHSA, 2021).

  198. Mallapaty, S. Where did Omicron come from? Three key theories. Nature 602, 26–28 (2022).

    Article  CAS  Google Scholar 

  199. Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383, 2291–2293 (2020).

    Article  Google Scholar 

  200. Chaguza, C. et al. Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Preprint at medRxiv https://doi.org/10.1101/2022.06.29.22276868 (2022).

  201. Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).

    Article  CAS  Google Scholar 

  202. Jackson, B. et al. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell 184, 5179–5188.e8 (2021).

    Article  CAS  Google Scholar 

  203. Sekizuka, T. et al. Genome recombination between Delta and Alpha variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Jpn J. Infect. Dis. https://doi.org/10.7883/yoken.JJID.2021.844 (2022).

    Article  Google Scholar 

  204. Simon-Loriere, E. et al. Rapid characterization of a Delta-Omicron SARS-CoV-2 recombinant detected in Europe. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-1502293/v1 (2022).

  205. UKHSA. SARS-CoV-2 Variants of Concern and Variants Under Investigation in England: Technical Briefing 40 (UKHSA, 2022).

  206. Network for Surveillance-South Africa (NGS-SA). SARS-CoV-2 Sequencing Update 15 July 2022 (NGS-SA, 2022).

  207. Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Preprint at bioRxiv https://doi.org/10.1101/2022.09.15.507787 (2022).

  208. Lytras, S. et al. Exploring the natural origins of SARS-CoV-2 in the light of recombination. Genome Biol. Evol. https://doi.org/10.1093/gbe/evac018 (2022).

    Article  Google Scholar 

  209. Demetrius, L. & Ziehe, M. Darwinian fitness. Theor. Popul. Biol. 72, 323–345 (2007).

    Article  Google Scholar 

  210. Domingo, E. & Holland, J. J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178 (1997).

    Article  CAS  Google Scholar 

  211. Wargo, A. R. & Kurath, G. Viral fitness: definitions, measurement, and current insights. Curr. Opin. Virol. 2, 538–545 (2012).

    Article  CAS  Google Scholar 


Page 2

Black boxes denote the presence of each mutation in the variant of concern. Epitope residues are coloured to indicate the amino-terminal domain (NTD) supersite187 or the receptor-binding domain (RBD) class188. For RBD residues, the results of deep mutational scanning (DMS) studies show the escape fraction (that is, a quantitative measure of the extent to which a mutation reduced polyclonal antibody binding) for each mutant averaged across plasma (‘plasma avg’) and for the most sensitive plasma (‘plasma max’)189, illustrating consistency or variation in the effect of a mutation depending on differences in the antibody repertoire of individuals. Mutations in the furin cleavage site are highlighted. Orange shading indicates the distance to angiotensin-converting enzyme 2 (ACE2)-contacting residues that form the receptor-binding site (RBS). Note that the RBS is defined as residues with an atom <4 Å from an ACE2 atom in the structure of the RBD bound to ACE2 (RCSB Protein Data Bank ID 6M0J190). Finally, ACE2-binding scores representing the binding constant (Δlog10 KD) relative to the wild-type reference amino acid from DMS experiments are shown in shades of red or blue26.